Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tengwen Guo, Chian Sing Lai, Xi Jie Tan, Chin Seng Teo and Edward R. T. Tiekink*
Department of Chemistry, National University of Singapore, Singapore 117543

Correspondence e-mail: chmtert@nus.edu.sg

Key indicators

Single-crystal X-ray study
$T=223 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.045$
ωR factor $=0.105$
Data-to-parameter ratio $=27.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(diethyldithiocarbamato)(4,7-dimethyl-1,10phenanthroline)cadmium(II) acetonitrile solvate

An $\mathrm{N}_{2} \mathrm{~S}_{4}$ donor set defines the coordination environment about the cadmium centre in the monomeric title complex, $\left[\mathrm{Cd}(\text { dedtc })_{2}\left(4,7-\mathrm{Me}_{2}\right.\right.$ phen $\left.)\right] \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$ or $\left[\mathrm{Cd}\left\{\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right\}_{2}-\right.$ $\left.\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right] \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$. The disposition of the donor atoms is such as to define a polyhedron based on a trigonal prism.

Comment

The structure of the title compound, $\operatorname{Cd}(\text { dedtc })_{2}(4,7-$ Me_{2} phen), (I), has been determined as part of an ongoing investigation of the structural characteristics of zinc, cadmium and mercury 1,1-dithiolates and their adducts. It is well understood that the diverse coordination patterns and molecular aggregation observed in the parent compounds (Cox \& Tiekink, 1997) is moderated upon addition of Lewis base so that, usually, mononuclear or dinuclear species result. This reduced aggregation offers a considerable advantage in terms of providing more suitable precursors for chemical vapour deposition studies.

(I)

The molecular structure of (I) (Fig. 1 and Table 1) features a six-coordinate cadmium centre defined by four S atoms, derived from two dithiocarbamate ligands, and two N atoms from the diimine. The dithiocarbamate ligands adopt a chelating mode of coordination, forming essentially equivalent $\mathrm{Cd}-\mathrm{S}$ bonds that lie in the relatively narrow range 2.6116 (7)-2.6976 (7) A [average 2.6617 (4) Å]. Similarly, the $\mathrm{Cd}-\mathrm{N}$ bonds [average 2.408 (1) \AA] are equal within experimental error. The coordination geometry is irregular, being intermediate between octahedral and trigonal prismatic, but tending towards the latter. In the trigonal prismatic description, atoms S1, S3 and N4 define one triangular face and atoms S2, S4 and N3 the other. The dihedral angle between the two faces is $5.66(8)^{\circ}$. Atoms S1-S4 lie, respectively, 0.3152 (4), -0.3299 (4), -0.3129 (4) and 0.3276 (4) \AA out of their leastsquares plane and the dihedral angle formed between this and the plane through atoms Cd, N3 and N4 is $88.83(5)^{\circ}$.

The structures of both the $2,2^{\prime}$-bipyridine and 1,10phenanthroline adducts of $\mathrm{Cd}(\mathrm{dedtc})_{2}$ are known (Glinskaya et al., 1992; Airoldi et al., 1990). The coordination geometries in these structures have been described as distorted octahedral. In the $2,2^{\prime}$-bipyridine structure, which has crystallographic twofold symmetry, the average $\mathrm{Cd}-\mathrm{S}$ and $\mathrm{Cd}-\mathrm{N}$

Received 21 May 2002 Accepted 16 July 2002 Online 19 July 2002

Figure 1
The molecular structure and crystallographic numbering scheme for (I). Displacement ellipsoids are shown at the 50% probability level (Johnson, 1976).
bond distances are 2.6670 (7) and 2.430 (3) \AA, respectively. These are in accord with the values in the 1,10-phenanthroline adduct, for which two molecules comprise the asymmetric unit, are 2.671 (1) and 2.410 (5) \AA, respectively. This are in accord with the values determined in the present study. By contrast to the mononuclear species formed with the diimine bases, a dinuclear structure with square pyramidal cadmium centres is found in the diphosphine adduct $\mathrm{Cd}(\text { dedtc })_{2}(\mu$ $\left.\mathrm{Ph}_{2} \mathrm{PC}_{5} \mathrm{H}_{4} \mathrm{FeC}_{5} \mathrm{H}_{4} \mathrm{PPh}_{2}\right) \mathrm{Cd}(\text { dedtc) })_{2}$ (Dee \& Tiekink, 2002a).

Experimental

Yellow crystals were obtained by slow evaporation of a $\mathrm{CHCl}_{3} /$ $\mathrm{CH}_{3} \mathrm{CN}$ (1/1) solution of $\mathrm{Cd}(\text { dedtc })_{2}\left(4,7-\mathrm{Me}_{2}\right.$ phen $)$ prepared by refluxing equimolar amounts of $\mathrm{Cd}(\text { dedtc })_{2}$ (Dee \& Tiekink, 2002b) and 4,7-dimethyl-1,10-phenanthroline (Aldrich) in chloroform solution. The melting point of the desolvated material was $551-555$ K. IR: $(\mathrm{KBr}) \nu(\mathrm{C}-\mathrm{S}) 1030,990$ and $\nu(\mathrm{C}-\mathrm{N}) 1417 \mathrm{~cm}^{-1}$.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right)_{2}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right] \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$
$M_{r}=658.23$
Monoclinic, $P 2_{1} / c$
$a=10.9451$ (7) \AA
$b=10.0886$ (6) \AA
$c=28.4366$ (17) \AA
$\beta=94.198(1)^{\circ}$
$V=3131.6(3) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD diffractometer

ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.739, T_{\text {max }}=0.924$
25219 measured reflections
$D_{x}=1.396 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7229 reflections
$\theta=2.4-30.0^{\circ}$
$\mu=0.99 \mathrm{~mm}^{-1}$
$T=223$ (2) K
Needle, pale yellow
$0.55 \times 0.08 \times 0.08 \mathrm{~mm}$

$$
\begin{aligned}
& 9058 \text { independent reflections } \\
& 7059 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.036 \\
& \theta_{\max }=30.0^{\circ} \\
& h=-15 \rightarrow 15 \\
& k=-13 \rightarrow 14 \\
& l=-29 \rightarrow 39
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0518 P)^{2}\right. \\
& \quad+0.3208 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.27 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.105$
reflections
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Cd-S1	$2.6116(7)$	$\mathrm{S} 1-\mathrm{C} 1$	$1.719(3)$
Cd-S2	$2.6976(7)$	$\mathrm{S} 2-\mathrm{C} 1$	$1.720(3)$
$\mathrm{Cd}-\mathrm{S} 3$	$2.6630(7)$	$\mathrm{S} 4-\mathrm{C} 6$	$1.720(3)$
$\mathrm{Cd}-\mathrm{S} 4$	$2.6747(7)$	$\mathrm{S} 3-\mathrm{C} 6$	$1.720(3)$
$\mathrm{Cd}-\mathrm{N} 3$	$2.405(2)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.335(3)$
$\mathrm{Cd}-\mathrm{N} 4$	$2.410(2)$	$\mathrm{N} 2-\mathrm{C} 6$	$1.324(4)$
$\mathrm{S} 1-\mathrm{Cd}-\mathrm{S} 2$	$67.80(2)$	$\mathrm{S} 4-\mathrm{Cd}-\mathrm{N} 4$	$114.71(5)$
$\mathrm{S} 1-\mathrm{Cd}-\mathrm{S} 3$	$102.21(2)$	$\mathrm{N} 3-\mathrm{Cd}-\mathrm{N} 4$	$67.84(7)$
$\mathrm{S} 1-\mathrm{Cd}-\mathrm{S} 4$	$151.09(2)$	$\mathrm{Cd}-\mathrm{S} 1-\mathrm{C} 1$	$88.00(9)$
$\mathrm{S} 1-\mathrm{Cd}-\mathrm{N} 3$	$109.38(5)$	$\mathrm{Cd}-\mathrm{S} 2-\mathrm{C} 1$	$85.22(9)$
$\mathrm{S} 1-\mathrm{Cd}-\mathrm{N} 4$	$90.79(5)$	$\mathrm{Cd}-\mathrm{S} 3-\mathrm{C} 6$	$86.83(9)$
$\mathrm{S} 2-\mathrm{Cd}-\mathrm{S} 3$	$122.05(2)$	$\mathrm{Cd}-\mathrm{S} 4-\mathrm{C} 6$	$86.44(9)$
$\mathrm{S} 2-\mathrm{Cd}-\mathrm{S} 4$	$94.11(2)$	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	$118.95(15)$
$\mathrm{S} 2-\mathrm{Cd}-\mathrm{N} 3$	$93.52(5)$	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	$119.8(2)$
$\mathrm{S} 2-\mathrm{Cd}-\mathrm{N} 4$	$145.75(6)$	$\mathrm{S} 2-\mathrm{C} 1-\mathrm{N} 1$	$121.2(2)$
$\mathrm{S} 3-\mathrm{Cd}-\mathrm{S} 4$	$67.49(2)$	$\mathrm{S} 3-\mathrm{C} 6-\mathrm{S} 4$	$119.08(15)$
$\mathrm{S} 3-\mathrm{Cd}-\mathrm{N} 3$	$139.54(5)$	$\mathrm{S} 3-\mathrm{C} 6-\mathrm{N} 2$	$120.4(2)$
$\mathrm{S} 3-\mathrm{Cd}-\mathrm{N} 4$	$87.48(5)$	$\mathrm{S} 4-\mathrm{C} 6-\mathrm{N} 2$	$120.5(2)$
$\mathrm{S} 4-\mathrm{Cd}-\mathrm{N} 3$	$93.50(5)$		

H atoms were placed in calculated positions and included with overall displacement parameters: $U_{\text {iso }}=x U_{\text {eq }}(\mathrm{C})$, with $x=1$ for aromatic, $x=1.25$ for methylene and $x=1.5$ for methyl H . The largest residual electron-density peaks are in the vicinity of the Cd atom.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SHELXTL (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976).

The authors thank the National University of Singapore for the award of a research grant (R-143-000-151-112), and the National University of Singapore and the Ministry of Education for organizing the Science Mentorship Programme 2002 to enable TG, XJT and CST to conduct research in the Department of Chemistry.

References

Airoldi, C., De Oliveira, S. F., Ruggiero, S. G. \& Lechat, J. R. (1990). Inorg. Chim. Acta, 174, 103-108.
Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Bruker (2000). SMART, SAINT and SHELXTL (Versions V5.6) and SADABS (Version 2.01). Bruker AXS Inc., Madison, Wisconsin, USA.
Cox, M. J. \& Tiekink, E. R. T. (1997). Rev. Inorg. Chem. 17, 1-23.
Dee, C. M. \& Tiekink, E. R. T. (2002a). Acta Cryst. E58, m136-m138.
Dee, C. M. \& Tiekink, E. R. T. (2002b). Z. Kristallogr. New Cryst. Struct. 217, 85-86.
Glinskaya, L. A., Klevtsova, R. F. \& Zemskova, S. M. (1992). Zh. Strukt. Khim. 33, 106-114.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

